
Stader Labs
LunaX for Terra2

CosmWasm Smart Contract
Security Audit

Prepared by: Halborn

Date of Engagement: June 6th, 2022 - June 8th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 5

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) DEPOSIT BOUNDS NOT VALIDATED - LOW 14

Description 14

Code Location 14

Risk Level 15

Recommendation 15

Remediation plan 15

3.2 (HAL-02) STATE SAVED WITHOUT ANY CHANGE - INFORMATIONAL 16

Description 16

Code Location 16

Risk Level 16

Recommendation 16

Remediation plan 17

3.3 (HAL-03) UNNECESSARY LOWERCASE ON ADDRESS - INFORMATIONAL 18

Description 18

1



Code Location 18

Risk Level 19

Recommendation 19

Remediation plan 19

3.4 (HAL-04) LACK OF ADDRESS VALIDATION - INFORMATIONAL 20

Description 20

Code Location 20

Risk Level 20

Recommendation 20

Remediation plan 21

3.5 (HAL-05) UNNECESSARY LOOPING OVER VECTOR - INFORMATIONAL 22

Description 22

Code Location 22

Risk Level 22

Recommendation 22

Remediation plan 23

3.6 (HAL-06) HARDCODED DENOM IN QUERY - INFORMATIONAL 24

Description 24

Code Location 24

Risk Level 24

Recommendation 24

Remediation plan 25

3.7 (HAL-07) ADDRESS VALIDATION DONE AT ACCEPT-MANAGER STEP - IN-

FORMATIONAL 26

Description 26

Code Location 26

2



Risk Level 27

Recommendation 27

Remediation plan 27

3.8 (HAL-08) DUPLICATE CODE IMPACTS MAINTAINABILITY - INFORMATIONAL

28

Description 28

Code Location 28

Risk Level 29

Recommendation 29

Remediation plan 29

3.9 (HAL-09) OVERFLOW CHECKS NOT SET FOR PROFILE RELEASE - INFORMA-

TIONAL 30

Description 30

Code Location 30

Risk Level 30

Recommendation 30

Remediation plan 30

3.10 (HAL-10) CONFIGURATION PARAMETER NOT SET UPON INSTANTIATION -

INFORMATIONAL 31

Description 31

Code Location 31

Risk Level 31

Recommendation 32

Remediation plan 32

3.11 (HAL-11) UNMANTAINED DEPENDENCY - INFORMATIONAL 33

Description 33

Code Location 33

3



Risk Level 34

Recommendation 34

Remediation plan 34

4



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 06/06/2022 Jose C. Ramirez

0.2 Draft Version 06/06/2022 Jose C. Ramirez

0.3 Draft Review 06/08/2022 Gabi Urrutia

1.0 Remediation Plan 06/10/2022 Jose C. Ramirez

1.1 Remediation Plan Review 06/10/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Jose C. Ramirez Halborn Jose.Ramirez@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Jose.Ramirez@halborn.com


6

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Stader Labs engaged Halborn to conduct a security audit on their smart

contracts beginning on June 6th, 2022 and ending on June 8th, 2022 . The

security assessment was scoped to the smart contracts provided in the

GitHub repository stader-liquid-token, commit hashes and further details

can be found in the Scope section of this report. LunaX contracts were

audited in the past, but recently received relevant updates to prepare

for the Terra 2 release.

1.2 AUDIT SUMMARY

The team at Halborn was provided three days for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineers are blockchain and smart-contract secu-

rity experts with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which were mostly addressed by Stader Labs team.

The main ones are the following:

• Perform bounds validation on all the relevant configuration

parameters.

• Remove unnecessary save operations on state variables.

• Remove unnecessary lowercase operations on addresses that are

being validated.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/stader-liquid-token


1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Smart contract manual code review and walk-through to identify any

logic issue.

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic related vul-

nerabilities.

• Finding unsafe Rust code usage (cargo-geiger)

• Active Fuzz testing (honggfuzz).

• Test coverage review (cargo tarpaulin).

• Local or public Testnet deployment (LocalTerra or bombay-12)

• Scanning of Rust dependencies for known vulnerabilities (cargo audit

).

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

8

EX
EC

UT
IV

E
OV

ER
VI

EW



level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

Code repository: https://github.com/stader-labs/stader-liquid-token

1. CosmWasm LunaX Smart Contracts

(a) Commit ID: 86f5617343f56a7b74f4b42e84ffa54ff6317c40

(b) Contracts in scope:

• Airdrops Registry contract (contracts/airdrops-registry)

• Reward contract (contracts/reward)

• Staking contract (contracts/staking)

Out-of-scope: External libraries and financial related attacks.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/stader-liquid-token
https://github.com/stader-labs/stader-liquid-token/tree/86f5617343f56a7b74f4b42e84ffa54ff6317c40


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 1 10

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-06)
(HAL-07)
(HAL-08)
(HAL-09)
(HAL-10)
(HAL-11)

(HAL-02)
(HAL-03)
(HAL-04)
(HAL-05)

11

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) DEPOSIT BOUNDS NOT
VALIDATED

Low
PARTIALLY SOLVED -

06/10/2022

(HAL-02) STATE SAVED WITHOUT ANY
CHANGE

Informational SOLVED - 06/09/2022

(HAL-03) UNNECESSARY LOWERCASE ON
ADDRESS

Informational SOLVED - 06/09/2022

(HAL-04) LACK OF ADDRESS VALIDATION Informational NOT APPLICABLE

(HAL-05) UNNECESSARY LOOPING OVER
VECTOR

Informational ACKNOWLEDGED

(HAL-06) HARDCODED DENOM IN QUERY Informational SOLVED - 06/09/2022

(HAL-07) ADDRESS VALIDATION DONE AT
ACCEPT-MANAGER STEP

Informational ACKNOWLEDGED

(HAL-08) DUPLICATE CODE IMPACTS
MAINTAINABILITY

Informational ACKNOWLEDGED

(HAL-09) OVERFLOW CHECKS NOT SET
FOR PROFILE RELEASE

Informational ACKNOWLEDGED

(HAL-10) CONFIGURATION PARAMETER
NOT SET UPON INSTANTIATION

Informational ACKNOWLEDGED

(HAL-11) UNMANTAINED DEPENDENCY Informational SOLVED - 06/09/2022

12

EX
EC

UT
IV

E
OV

ER
VI

EW



13

FINDINGS & TECH
DETAILS



3.1 (HAL-01) DEPOSIT BOUNDS NOT
VALIDATED - LOW

Description:

The min_deposit and max_deposit configuration variables of the staking

contract do not undergo any validation step. The aforementioned values

are used to limit the maximum/minimum amounts that users are allowed to

deposit.

If a typing error or a malicious admin would set the minimum to a very big

number or the maximum to zero, the protocol would effectively suffer a

denial of service. A similar situation applies to undelegation_cooldown,

unbounding_period and reinvest_cooldown.

Code Location:

Listing 1: contracts/staking/src/contract.rs (Lines 59,60)

56 let config = Config {

57 manager: info.sender ,

58 vault_denom: "uluna".to_string (),

59 min_deposit: msg.min_deposit ,

60 max_deposit: msg.max_deposit ,

Listing 2: contracts/staking/src/contract.rs

76 undelegation_cooldown: msg.undelegation_cooldown ,

77 unbonding_period: msg.unbonding_period ,

78 reinvest_cooldown: msg.reinvest_cooldown ,

Listing 3: contracts/staking/src/contract.rs

283 config.min_deposit = update_config.min_deposit.unwrap_or(config.

ë min_deposit);

284 config.max_deposit = update_config.max_deposit.unwrap_or(config.

ë max_deposit);

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 4: contracts/staking/src/contract.rs

307 config.undelegation_cooldown = update_config

308 .undelegation_cooldown

309 .unwrap_or(config.undelegation_cooldown);

310 config.unbonding_period = update_config

311 .unbonding_period

312 .unwrap_or(config.unbonding_period);

313 config.reinvest_cooldown = update_config

314 .reinvest_cooldown

315 .unwrap_or(config.reinvest_cooldown);

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

A validation routine should be added inside the instantiate

and update_config functions to enforce that the values of

min_deposit, max_deposit, undelegation_cooldown, unbounding_period and

reinvest_cooldown are within the expected ranges.

Remediation plan:

PARTIALLY SOLVED: The Stader Labs team acknowledged the lack of bounds

for reinvest_cooldown. On the other hand, validation mechanisms for

undelegation_cooldown, unbounding_period, min_deposit and max_deposit

were implemented in commit b27a835330f81dcaeee0a8cb091b60a5b3e4b8e1.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-liquid-token/commit/b27a835330f81dcaeee0a8cb091b60a5b3e4b8e1


3.2 (HAL-02) STATE SAVED WITHOUT
ANY CHANGE - INFORMATIONAL

Description:

The queue_undelEgation function loads STATE to update other details with

the current values of current_undelegation_batch_id and exchange_rate.

Although none of its fields are actually updated on this function, the

STATE is saved at the end.

This issue does not pose an actual security threat, but unnecessary code

decreases readability and increases gas costs.

Code Location:

Listing 5: contracts/staking/src/contract.rs (Line 820)

816 batch_undelegation.undelegation_er = state.exchange_rate;

817 Ok(batch_undelegation)

818 },

819 )?;

820 STATE.save(deps.storage , &state)?;

821

822 Ok(Response :: default ())

Risk Level:

Likelihood - 2

Impact - 1

Recommendation:

Do not save state variables if nothing has been updated.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation plan:

SOLVED: The issue was fixed in commit 8121307836d015f0a4ecdd790d38b2e16c674d01.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-liquid-token/tree/8121307836d015f0a4ecdd790d38b2e16c674d01


3.3 (HAL-03) UNNECESSARY LOWERCASE
ON ADDRESS - INFORMATIONAL

Description:

The contracts within scope actively lowercase addresses that are later

validated. This kind of operation made sense when the supported CosmWasm

version didn’t implement any fixes for CWA-2022-002. Terra 2 is based on

CosmWasm 1.0.0 which implements a validation mechanism to prevent address

normalization issues found in the past.

Although not an actual security issue, it is an unnecessary operation for

addresses that are later validated through deps.api.addr_validate(). In

addition to incurring in extra gas cost, it decreases readability.

Code Location:

Listing 6: contracts/airdrops-registry/src/contract.rs (Line 77)

74 TMP_MANAGER_STORE.save(

75 deps.storage ,

76 &TmpManagerStore {

77 manager: manager.to_lowercase (),

78 },

79 )?;

Listing 7: Resources affected

1 contracts/airdrops -registry/src/contract.rs#77, 131, 134

2 contracts/reward/src/contract.rs#32, 89

3 contracts/staking/src/contract.rs#189, 275, 333, 364, 365, 430,

ë 431, 1196, 1237, 1263

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/CosmWasm/advisories/blob/main/CWAs/CWA-2022-002.md


Risk Level:

Likelihood - 2

Impact - 1

Recommendation:

When storing addresses for later usage on Terra 2, validation through

deps.api.addr_validate() is enough and explicit capitalization checks

are not required anymore.

Remediation plan:

SOLVED: The issue was fixed in commit f51ab5b426fdc18aae1192d97f89b6d67d0ad5e7.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-liquid-token/commit/f51ab5b426fdc18aae1192d97f89b6d67d0ad5e7


3.4 (HAL-04) LACK OF ADDRESS
VALIDATION - INFORMATIONAL

Description:

The staking contracts doesn’t validate addresses of validators on the

add_validator, rebalance_pool and remove_validator_from_pool functions.

This does not introduce an actual security threat in the contract as

these addresses are later used to query if an actual validator exists,

avoiding accounting for incorrect addresses.

However, this issue has been included for informational purposes, as

the error raised from validating the address is more descriptive for

a user inputting an incorrect address than the current ContractError::

ValidatorNotDiscoverable. In addition, no lowercasing operating will be

required if the address is validated as mentioned in (HAL-03) UNNECESSARY

LOWERCASE ON ADDRESS.

Code Location:

Listing 8: Resources affected

1 contracts/staking/src/contract.rs#333 ,364 ,365 ,430 ,431

Risk Level:

Likelihood - 2

Impact - 1

Recommendation:

Validate the addresses using deps.api.addr_validate() without any lower-

casing.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation plan:

NOT APPLICABLE: The proposed recommendation was considered not suitable

for Validator addresses as opposed to normal Terra addresses. Therefore,

the best possible approach is to maintain the lowercase and check if it

is part of the validator pool afterwards.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.5 (HAL-05) UNNECESSARY LOOPING
OVER VECTOR - INFORMATIONAL

Description:

The undelegate_stake function retrieves the amount of funds to be un-

delegated on current_undelegation_batch_id and then goes over the whole

vector of stake_tuples to actually undelegate the required amount. How-

ever, instead of checking if there is a positive amount of funds to be

delegated before looping over the vector, the check is done inside the

for loop, effectively going over the whole vector unnecessarily.

Although not posing an actual security threat, the function will incur

in unnecessary extra gas costs when there is nothing to undelegate.

Code Location:

Listing 9: contracts/staking/src/contract.rs (Lines 894,895)

892 for index in (0.. stake_tuples.len()).rev() {

893 let tuple_val = stake_tuples.get(index).unwrap ().clone ();

894 if to_undelegate.is_zero () {

895 break;

896 }

897 let val_addr = Addr:: unchecked(tuple_val .1);

Risk Level:

Likelihood - 2

Impact - 1

Recommendation:

Place the check prior to the for loop to avoid going over it unnecessarily.

The following snippet illustrates an example of this.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 10: Proposed fix

1 if !to_undelegate.is_zero () {

2 for index in (0.. stake_tuples.len()).rev() {

3 let tuple_val = stake_tuples.get(index).unwrap ().clone ();

4 // Additional code

5 // Additional code

6 }

7 }

Remediation plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.6 (HAL-06) HARDCODED DENOM IN
QUERY - INFORMATIONAL

Description:

The denom of the native coin managed by the protocol, uluna at the time

of the audit, is stored as part of the Configuration to be later accessed

as config.vault_denom when required. However, one line of code has does

not follow this pattern and hard-codes uluna instead.

Although not posing an actual security threat, following the described

pattern aids on code maintainability and readability in case the vault

denom is to be changed in the future.

Code Location:

Listing 11: contracts/staking/src/contract.rs (Line 1206)

1203 Ok(UserInfoResponse {

1204 user_info: UserQueryInfo {

1205 total_tokens: user_token_balance ,

1206 total_amount: Coin::new(user_amount.u128(), "uluna".

ë to_string ()),

1207 },

1208 })

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Use config.vault_denom instead, as shown below.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 12: Proposed fix (Line 1206)

1203 Ok(UserInfoResponse {

1204 user_info: UserQueryInfo {

1205 total_tokens: user_token_balance ,

1206 total_amount: Coin::new(user_amount.u128(), config.

ë vault_denom),

1207 },

1208 })

Remediation plan:

SOLVED: The issue was fixed in commit 8121307836d015f0a4ecdd790d38b2e16c674d01.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-liquid-token/tree/8121307836d015f0a4ecdd790d38b2e16c674d01


3.7 (HAL-07) ADDRESS VALIDATION
DONE AT ACCEPT-MANAGER STEP -
INFORMATIONAL

Description:

The contracts within scope implement the recommended two-step pattern for

transferring privileged addresses while validating the address. However,

address validation is done on the accept_manager function instead of the

set_manager function.

Although not posing an actual security threat, it will cause inconvenience

to manager users. When an incorrect address is submitted, the error

introduced in the first step will be actually checked on the second step

instead, making them go back to the first step.

Code Location:

Listing 13: contracts/airdrops-registry/src/contract.rs (Lines 98,103)

84 pub fn accept_manager(

85 deps: DepsMut ,

86 info: MessageInfo ,

87 _env: Env ,

88 ) -> Result <Response , ContractError > {

89 let mut config = CONFIG.load(deps.storage)?;

90

91 let tmp_manager_store =

92 if let Some(tmp_manager_store) = TMP_MANAGER_STORE.

ë may_load(deps.storage)? {

93 tmp_manager_store

94 } else {

95 return Err(ContractError :: TmpManagerStoreEmpty {});

96 };

97

98 let manager = deps.api.addr_validate(tmp_manager_store.manager

ë .as_str ())?;

99 if info.sender != manager {

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



100 return Err(ContractError :: Unauthorized {});

101 }

102

103 config.manager = deps.api.addr_validate(tmp_manager_store.

ë manager.as_str ())?;

104 TMP_MANAGER_STORE.remove(deps.storage);

Listing 14: Resources affected

1 contracts/airdrops -registry/src/contract.rs#98 ,103

2 contracts/reward/src/contract.rs#110 ,115

3 contracts/staking/src/contract.rs#210

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to perform address validation upon storage as part of

the set_manager function, instead of doing it at accept_manager.

Remediation plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.8 (HAL-08) DUPLICATE CODE IMPACTS
MAINTAINABILITY - INFORMATIONAL

Description:

The contracts within scope enforce access controls on the execution of

multiple privileged messages that are manager only. The logic that

enforces this mechanism is duplicated across multiple functions.

Although not posing an actual security threat, it negatively impacts

code’s readability and maintainability, as it is error-prone. This same

issue applies to the operation paused controls of the staking contract.

It should be highlighted that the staking contract follows the proposed

logic in most of its privileged functions.

Code Location:

Listing 15: contracts/airdrops-registry/src/contract.rs

99 if info.sender != manager {

100 return Err(ContractError :: Unauthorized {});

101 }

Listing 16: contracts/staking/src/contract.rs

522 let operation_controls = OPERATION_CONTROLS.load(deps.storage)?;

523

524 if operation_controls.deposit_paused {

525 return Err(ContractError :: OperationPaused("deposit".to_string

ë ()));

526 }

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 17: Resources affected

1 contracts/airdrops -registry/src/contract.rs#70 ,99 ,120

2 contracts/reward/src/contract.rs#82 ,111 ,135 ,173

3 contracts/staking/src/contract.rs#524, 636, 671, 683, 776, 832,

ë 845, 934, 1016, 1106

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Refactor the access controls and pausing controls to a function of their

own and use them across all the relevant functionalities.

Remediation plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.9 (HAL-09) OVERFLOW CHECKS NOT
SET FOR PROFILE RELEASE -
INFORMATIONAL

Description:

Although the overflow-checks parameter is set to true in profile.release

and is implicitly applied to all contracts and packages in the workspace,

it is not explicitly enabled in Cargo.toml for each individual contract

and package, which could have unexpected consequences if the project is

refactored.

Code Location:

Listing 18: Resources affected

1 contracts/airdrops -registry/Cargo.toml

2 contracts/reward/Cargo.toml

3 contracts/staking/Cargo.toml

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended that you explicitly enable overflow checks on each

individual contract and package. That measure helps when the project is

refactored to avoid unintended consequences.

Remediation plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.10 (HAL-10) CONFIGURATION
PARAMETER NOT SET UPON
INSTANTIATION - INFORMATIONAL

Description:

The instantiate function did not set the cw20_token_contract address,

as it did for other required contract addresses in the configuration.

Instead, it relied on update_config being called post initialization,

which could cause undesirable situations if this address is not set right

after deployment.

It is worth noting that the update_config function only allowed the CW20

address to be set if it contained the initial value Addr::unchecked("0").

This effectively prohibited any future change after the first update.

Code Location:

Listing 19: contracts/staking/src/contract.rs (Line 69)

68 reward_contract: deps.api.addr_validate(msg.reward_contract.as_str

ë ())?,

69 cw20_token_contract: Addr:: unchecked("0"),

70

71 protocol_fee_contract: deps.api.addr_validate(msg.

ë protocol_fee_contract.as_str ())?,

Risk Level:

Likelihood - 1

Impact - 1

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

The cw20_token_contract variable should be set on instantiation, just

like with the other contract addresses.

Remediation plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.11 (HAL-11) UNMANTAINED
DEPENDENCY - INFORMATIONAL

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and vulnerabilities. Among the tools used

was cargo audit, a security scanner for vulnerabilities reported to the

RustSec Advisory Database. All vulnerabilities published in https://

crates.io are stored in a repository named The RustSec Advisory Database.

cargo audit is a human-readable version of the advisory database which

performs a scanning on Cargo.lock. Security Detections are only in scope.

To better assist the developers maintaining this code, the auditors are

including the output with the dependencies tree, and this is included

in the cargo audit output to better know the dependencies affected by

unmaintained and vulnerable crates.

ID package Short Description

RUSTSEC-2020-0025 bigint biginit is unmaintained, use uint instead

Code Location:

Listing 20: Dependency tree

1 bigint 4.4.3

2 cosmwasm -bignumber 2.2.0

3 stader -utils 0.1.0

4 staking 0.1.0

5 reward 0.1.0

6 staking 0.1.0

7 airdrops -registry 0.1.0

8 staking 0.1.0

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://rustsec.org/advisories/RUSTSEC-2020-0025


Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Beware of using dependencies and packages that are no longer supported

by developers or have publicly known security flaws, even when they are

not currently exploitable.

Remediation plan:

SOLVED: The issue was fixed in commit 6431dd2138e296e3d4358a7774bd826289874576.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-liquid-token/tree/6431dd2138e296e3d4358a7774bd826289874576


THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation plan



